linkedin Follow discussions on LinkedIn | Twitter - Technology a Uniform LanguageTwitter | Technology Email a Friend | Subscribe to Newsbrief
  • Technoscan®
  • Technoscan® Newsbriefs
Click on tab above to view all newsbriefs in chronological order.
FIRST Prev Next LATEST

2013
06. Safe fragrances
05. DNA mass information store
04. Garden mounds for permaculture
03. Silver as high-tech material
02. Micro needle transmits medications and light
01. Electricity storage in gravity systems

2012
12. An eye on space hazards
11. Water purification through freezing
10. Solar shingles
09. Trinary code
08. Vegetation-based battery materials
07. Indoor position location
06. The interface industry
05. Hypersonic aircraft
04. Re-usable glass packaging
03. Vein patterns as personal ID
02. Magnet making bacteria
01. Ultra-light solids

2011
12. Ultrasound in water
11. Projected touchscreen
10. Electric airplane
08. Glass hard disc
04. Nuclear hazard
03. Clearing “sewer soap”
02. Water harvesting
01. Tea bag size personal water filter

2010
12. Human powered water transport
11. The Technium
08. Bio-remediation of oil spills
07. Cleaner coal
05. Oil spill remediation
04. Solar towers
03. Brain-computer
02. Biodiesel producing bacteria
01. Hydrogen producing bacteria

2009
12. Levitating living organisms
11. A new blue
10. Polymer magnets
09. Electric vehicle batteries
08. Implantable cancer monitors
07. Algal biofuel
06. Geo-Thermal Heat Pump
05. Battery powered roadster
04. Fenestration
03. Text to voice
02. Implantable ID chips
01. Air cleansing building material

2008
12. ebooks
11. Energy Harvesting
10. Private space-flights
09. Virus identification chip
08. Bio-fuels
07. Electronic financial trading
06. Bio-remediation
05. New tech agriculture
04. Manufactured Hotels
03. Magnetic Induction
02. Genetic Vaults
01. Solid-state lighting

2007
12 Bacteria in agriculture and industry
11. Blue revolution
10. Electronic nose
09. Nuclear sarcophagus
08. Shape shifting technology
07. Thought activated technology
06. Green is cool - make me look green
05. Electronic 'drugs'
04. Super-canals and super-ships
03. Environmentally friendly technology: greens versus grays
02. Agriculture: food,fiber and fuel
01. FPGA floating-point performance surpasses microprocessor

2006
08. Energy sources for electricity compete
07. Universal interface (UI)
06. Magnetic levitation
05. Light pipes
04. Storage of electricity
03. Automotive engines
02. Molecular assembly
01. Introducing Technoscan Newsbriefs


Vol. 7, No. 4. April 30, 2012
ISSN 1932-3018

Re-usable glass packaging
Positioning this technology in the
Functionality Grid
  Output
Matter
(M)
Energy
(E)
Information
(I)
A
C
T
I
O
N
Process
Transport
Storage
Reformatted from: Van Wyk, Rias J: Technology - A Unifying Code, 2004, SMG, Cape Town, p.34. Based on: Ropohl, Gunter: Eine Systemtheorie der Technik, 1979, Carl Hanser Verlag, Munich and Vienna, p.178.
This Newsbrief deals with a revival of interest in glass bottles and containers. In particular it draws attention to reports of consumer resistance to certain kinds of plastic. In terms of the Atlas of Technology it is concerned with the storage of matter (M).
The three major materials used in durable packaging are:
  • Plastics
  • Metals
  • Glass
Recently evidence has emerged of a shift in consumer preference. Increasingly glass is being preferred. The reasons given are consumer disaffection with plastic containers, such as water bottles, as well as with plastic liners used in food cans. Consumers mention a resistance to bisphenol A, a chemical that mimics estrogen. (Ruark, S., "More consumers choosing reusable glass bottles" New York Times, June 20, 2012). Consumers also report a concern for physical pollution, as dramatized by the vortex of plastic waste in the Pacific ocean.
The transition from one packaging material to another is a process that usually starts slowly and then speeds up as the challenger increases market share. In the case of glass a well-known problem exists, glass containers tend to break. To overcome this deficiency manufacturers are working on containers that do not shatter. One approach is an unbreakable exterior coating that holds possible broken glass together. The transition will not be smooth. The new product requires special manufacturing procedures different from the present mass production practices. But because market penetration is at an early stage, production runs are relatively short.
On the NASA nine point scale of technology readiness levels, the new containers are at TRL 7.

© Rias J. van Wyk, 2013. Editor.